Posts Tagged new physics

Physical explanation of entanglement

What is entanglement? Entanglement is a known physical phenomenon whereby particles affect each other despite being a macroscopic  distance apart, and despite no apparent connection between them. The effect is typically seen in the spin, which is an orientation property of particles, whereby an action of changing the spin of one particle results in the spin of the other also changing. Macroscopic entanglement requires special situations – it requires deliberate preparation and setting up of the experiment. It is  a coherent behaviour, and the effect is lost when dis-coherence sets in, which occurs when the particles are disturbed by outside forces and fields. Consequently it is not generally observed in macroscopic phenomenon at our level of existence, and for the same reasons neither is superposition (a particle is simultaneously in two geometric locations).

How does it operate? This is unknown. The experimental evidence is that it does exist, but the mechanism is not known. Classical Newtonian mechanics implies the effect should not exist. General relativity makes no provision for it. Quantum mechanics (QM) accepts it as real, and can express the outcomes mathematically, but does not describe how entanglement operates at the physical level.

Does new physics offer new explanations for entanglement? Yes. This is where the Cordus theory of fundamental physics offers a candidate solutions In the paper ‘A physical basis for entanglement in a non-local hidden variable theory’ (2017) (https://doi.org/10.4236/jmp.2017.88082) we show that superposition and entanglement may be qualitatively explained if particles were to have the internal structure proposed by the Cordus  theory.

This is a non-local hidden-variable (NLHV) theory, hence naturally supports non-local behaviour. Locality is the expectation that a point object is only affected by the values of fields and external environmental variables at that point, not by remote values. Entanglement is a type of non-local behaviour – the particles evidently behave as if affected by effects happening some distance away from the point the defines the particles.

As a type of hidden-variable theory, the theory proposes -and this is important- that fundamental particles have internal structure. This is a major departure from QM and its assumption that particles are zero-dimensional points without sub-structure.

Figure: Qualitative explanation of two-photon entanglement. The photons are predicted to originate from a Pauli pair of electrons – these electrons are bonded in a transphasic interaction and hence their emitted photons also have that interaction. Consequently the four reactive ends of the two photons are linked by fibrils, even as they move further apart. As a result the behaviours of the photons are coupled: hence entanglement.

The explanation from the Cordus theory is that there is no single point that defines the position of the particule. Its reactive ends between them occupy a volume of space, and its discrete fields extend out to occupy a volume of space external to the reactive ends.

The Cordus theory explains that locality fails because the particule is affected by what happens at both reactive ends, and by the externally-originating discrete forces it receives at both locations. A principle of Wider Locality is proposed, whereby the particule is affected by the values of external discrete forces (hence also conventional fields) in the vicinity of both its reactive ends.

The ability to explain entanglement conceptually in terms of physical realism is relevant because it rebuts the claim that it is impossible that such a hidden-variable theory could exist. This is significant because previously it has been believed that only QM could explain this phenomena.

CITATION:

Pons, D. J., Pons, A. D., & Pons, A. J. (2017). A physical basis for entanglement in a non-local hidden variable theory Journal of Modern Physics, 8(8), 1257-1274 doi: https://doi.org/10.4236/jmp.2017.88082   or http://file.scirp.org/Html/10-7503127_77506.htm  or http://vixra.org/abs/1502.0103

 

, ,

Leave a comment

Optical phenomena involving energy conversion: Explanation based on new physics

Many optical phenomena have poor or no explanations at the level of individual photon particles. Examples are the processes of photon emission, photon absorption, phase change at reflection, and laser emissions. These are adequately described by the classical electromagnetic wave theory of light, but that applies to waves and is difficult to extend to individual particles. Quantum mechanics (QM) better represents the behaviour of individual particles, but its power of explanation is weak, i.e. it can put numbers to phenomena but its explanations cannot be grounded in physical realism. QM is unable to explain how the 0D point of the photon is absorbed into the 0D point of the electron, or how a 0D photon separates into an electron and antielectron (pair production), or how matter and antimatter annihilate back to photons.

In the paper http://dx.doi.org/10.4236/jmp.2016.710094 we show how to solve this explanatory problem. We show that it is possible to explain many optical phenomena involving energy conversion. The solution involves a new physics at the sub-particle level, in the form of a non-local hidden-variable (NLHV) solution.

Process of photon emission from an electron

Process of photon emission from an electron

 

It has long been known that the bonding commitments of the electron affect its energy behaviour but the mechanisms for this have been elusive. We show how the degree of bonding constraint on the electron determines how it processes excess energy, see figure. A key concept is that the span and frequency of the electron are inversely proportional. This explains why energy changes cause positional distress for the electron.

Natural explanations are given for  multiple emission phenomena: Absorbance; Saturation; Beer-Lambert law; Colour; Quantum energy states; Directional emission; Photoelectric effect; Emission of polarised photons from crystals; Refraction effects; Reflection; Transparency; Birefringence; Cherenkov radiation; Bremsstrahlung and Synchrotron radiation; Phase change at reflection; Force impulse at reflection and radiation pressure; Simulated emission (Laser).

The originality of this work is the elucidation of a mechanism for how the electron responds to combinations of bonding constraint and pumped energy. The crucial insight is that the electron size and position(s) are coupled attributes of its frequency and energy, where the coupling is achieved via physical substructures. The theory is able to provide a logically coherent explanation for a wide variety of energy conversion phenomena.

Dirk Pons

Christchurch, New Zealand

15 June 2016

 

More information – The full paper (gold open access) is available at:

Pons, D.J., Pons, A.D., and Pons, A.J., (2016), Energy conversion mechanics for photon emission per non-local hidden-variable theory. Journal of Modern Physics, 7(10), 1049-1067.  http://dx.doi.org/10.4236/jmp.2016.710094

 

, , , , , , ,

Leave a comment

Beautiful mathematics vs. qualitative insights

Which is better for fundamental physics: beautiful mathematics based on pure concepts, or qualitative insights based on natural phenomena?

According to Lee Smolin in a 2015 arxiv paper [1], it’s the latter.

As I understand him, Smolin’s main point is that elegant qualitative explanations are more valuable than beautiful mathematics, that physics fails to progress when ‘mathematics [is used] as a substitute for insight into nature‘ (p13).
‘The point is not how beautiful the equations are, it is how minimal the assumptions needed and how elegant the explanations.‘ (http://arxiv.org/abs/1512.07551)
The symmetry methodology receives criticism for the proliferation of assumptions it requires, and the lack of explanatory power. Likewise particle supersymmetry is  identified as having the same failings. Smolin is also critical of of string theory, writing, ‘Thousands of theorists have spent decades studying these [string theory] ideas, and there is not yet a single connection with experiment‘ (p6-7).

Mathematical symmetries: More or fewer?

Smolin is especially critical of the idea that progress might be found in increasingly elaborate mathematical symmetries.
I also wonder whether the ‘symmetries’ idea is overloaded. The basic concept of symmetry is that some attribute of the system should be preserved when transformed about some dimension. Even if it is possible to represent this mathematically, we should still be prudent about which attributes, transformations, and dimensions to accept. Actual physics does not necessarily follow mathematical representation. There is generally a lack of critical evaluation of the validity of specific attributes, transformations, and dimensions for the proposed symmetries. The *time* variable is a case in point. Mathematical treatments invariably consider it to be a dimension, yet empirical evidence overwhelmingly shows this not to be the case.
Irreversibility shows that time does not evidence symmetry. The time dimension cannot be traversed in a controlled manner, neither forward and especially not backward. Also, a complex system of particles will not spontaneously revert to its former configuration.   Consequently *time* cannot be considered to be a dimension about which it is valid to apply a symmetry transformation even when one exists mathematically. Logically, we should therefore discard any mathematical symmetry that has a time dimension to it. That reduces the field considerably, since many symmetries have a temporal component.
Alternatively, if we are to continue to rely on temporal symmetries, it will be necessary to understand how the mechanics of irreversibility arises, and why those symmetries are exempt therefrom. I accept that relativity considers time to be a dimension, and has achieved significant theoretical advances with that premise. However relativity is also a theory of macroscopic interactions, and it is possible that assuming time to be a dimension is a sufficiently accurate premise at this scale, but not at others. Our own work suggests that time could be an emergent property of matter, rather than a dimension (http://dx.doi.org/10.5539/apr.v5n6p23).  This makes it much easier to explain the origins of the arrow of time and of irreversibility. So it can be fruitful, in an ontological way, to be sceptical of the idea that mathematical formalisms of symmetry are necessarily valid representations of actual physics. It might be reading too much into Smolin’s meaning when he says that ‘time… properties reflect the positions … of matter in the universe’ (p12), but that seems consistent with our proposition.

How to find a better physics?

The solution, Smolin says, is to ‘begin with new physical principles‘ (p8). Thus we should expect new physics will emerge by developing qualitative explanations based on intuitive insights from natural phenomena, rather than trying to extend existing mathematics. Explanations that are valuable are those that are efficient (fewer parameters, less tuning, and not involving extremely big or small numbers) and logically consistent with physical realism (‘tell a coherent story’). It is necessary that the explanations come first, and the mathematics follows later as a subordinate activity to formalise and represent those insights.
However it is not so easy to do that in practice, and Smolin does not have suggestions for where these new physical principles should be sought. His statement that ‘no such principles have been proposed‘ (p8) is incorrect. Ourselves and others have proposed new physical principles – ours is called the Cordus theory and based on a proposed internal structure to particles. Other theories exist, see vixra and arxiv. The bigger issue is that physics journals are mostly deaf to propositions regarding new principles. Our own papers have been summarily rejected by editors many times  due to ‘lack of mathematical content’ or ‘we do not publish speculative material’, or ‘extraordinary claims require extraordinary evidence’. In an ideal world all candidate solutions would at least be admitted to scrutiny, but this does not actually happen and there are multiple existing ideas in the wilds that never make it through to the formal journal literature frequented by physicists.  Even then, those ideas that undergo peer review and are published, are not necessarily widely available. The problem is that the academic search engines, like Elsevier’s Compendex and Thompson’s Web of Science,  are selective in what journals they index, and fail to provide  reliable coverage of the more radical elements of physics. (Google Scholar appears to provide an unbiassed assay of the literature.) Most physicists would have to go out of their way to inform themselves of the protosciences and new propositions that circulate in the wild outside their bubbles of knowledge. Not all those proposals can possibly be right, but neither are they all necessarily wrong. In mitigation, the body of literature in physics has become so voluminous that it is impossible for any one physicist to be fully informed about all developments, even within a sub-field like fundamental physics. But the point remains that new principles of physics do exist, based on intuitive insights from natural phenomena, and which have high explanatory power, exactly how Smolin expected things to develop.
Smolin suspects that true solutions will have fewer rather than more symmetries. This is also consistent with our  work, which indicates that both the asymmetrical leptogenesis and baryogenesis processes can be conceptually explained as consequences of a single deeper symmetry (http://dx.doi.org/10.4236/jmp.2014.517193). That is the matter-antimatter species differentiation (http://dx.doi.org/10.4006/0836-1398-27.1.26). That also explains asymmetries in decay rates (http://dx.doi.org/10.5539/apr.v7n2p1).
In a way, though he does not use the words, Smolin tacitly endorses the principle of physical realism: that physical observable phenomena do have deeper causal mechanics involving parameters that exist objectively. He never mentions the hidden-variable solutions. Perhaps this is indicative of the position of most theorists, that the hidden variable sector has been unproductive. Everyone has given up on it as intractable, and now ignore it. According to Google Scholar, ours looks to be the only group left in the world that is publishing non-local hidden-variable (NLHV) solutions. Time will tell whether or not these are strong enough, but these do already embody Smolin’s injunction to take a fresh look for new physical principles.

Dirk Pons

26 February 2016, Christchurch, New Zealand

This is an expansion of a post at Physics Forum  https://www.physicsforums.com/threads/smolin-lessons-from-einsteins-discovery.849464/#post-5390859

References

[1] 1. Smolin, L.: Lessons from Einstein’s 1915 discovery of general relativity. arxiv 1512.07551, 1-14 (2015). doi: http://arxiv.org/abs/1512.07551

 

 

, , , , , , , , ,

Leave a comment