Posts Tagged General relativity

Beautiful mathematics vs. qualitative insights

Which is better for fundamental physics: beautiful mathematics based on pure concepts, or qualitative insights based on natural phenomena?

According to Lee Smolin in a 2015 arxiv paper [1], it’s the latter.

As I understand him, Smolin’s main point is that elegant qualitative explanations are more valuable than beautiful mathematics, that physics fails to progress when ‘mathematics [is used] as a substitute for insight into nature‘ (p13).
‘The point is not how beautiful the equations are, it is how minimal the assumptions needed and how elegant the explanations.‘ (http://arxiv.org/abs/1512.07551)
The symmetry methodology receives criticism for the proliferation of assumptions it requires, and the lack of explanatory power. Likewise particle supersymmetry is  identified as having the same failings. Smolin is also critical of of string theory, writing, ‘Thousands of theorists have spent decades studying these [string theory] ideas, and there is not yet a single connection with experiment‘ (p6-7).

Mathematical symmetries: More or fewer?

Smolin is especially critical of the idea that progress might be found in increasingly elaborate mathematical symmetries.
I also wonder whether the ‘symmetries’ idea is overloaded. The basic concept of symmetry is that some attribute of the system should be preserved when transformed about some dimension. Even if it is possible to represent this mathematically, we should still be prudent about which attributes, transformations, and dimensions to accept. Actual physics does not necessarily follow mathematical representation. There is generally a lack of critical evaluation of the validity of specific attributes, transformations, and dimensions for the proposed symmetries. The *time* variable is a case in point. Mathematical treatments invariably consider it to be a dimension, yet empirical evidence overwhelmingly shows this not to be the case.
Irreversibility shows that time does not evidence symmetry. The time dimension cannot be traversed in a controlled manner, neither forward and especially not backward. Also, a complex system of particles will not spontaneously revert to its former configuration.   Consequently *time* cannot be considered to be a dimension about which it is valid to apply a symmetry transformation even when one exists mathematically. Logically, we should therefore discard any mathematical symmetry that has a time dimension to it. That reduces the field considerably, since many symmetries have a temporal component.
Alternatively, if we are to continue to rely on temporal symmetries, it will be necessary to understand how the mechanics of irreversibility arises, and why those symmetries are exempt therefrom. I accept that relativity considers time to be a dimension, and has achieved significant theoretical advances with that premise. However relativity is also a theory of macroscopic interactions, and it is possible that assuming time to be a dimension is a sufficiently accurate premise at this scale, but not at others. Our own work suggests that time could be an emergent property of matter, rather than a dimension (http://dx.doi.org/10.5539/apr.v5n6p23).  This makes it much easier to explain the origins of the arrow of time and of irreversibility. So it can be fruitful, in an ontological way, to be sceptical of the idea that mathematical formalisms of symmetry are necessarily valid representations of actual physics. It might be reading too much into Smolin’s meaning when he says that ‘time… properties reflect the positions … of matter in the universe’ (p12), but that seems consistent with our proposition.

How to find a better physics?

The solution, Smolin says, is to ‘begin with new physical principles‘ (p8). Thus we should expect new physics will emerge by developing qualitative explanations based on intuitive insights from natural phenomena, rather than trying to extend existing mathematics. Explanations that are valuable are those that are efficient (fewer parameters, less tuning, and not involving extremely big or small numbers) and logically consistent with physical realism (‘tell a coherent story’). It is necessary that the explanations come first, and the mathematics follows later as a subordinate activity to formalise and represent those insights.
However it is not so easy to do that in practice, and Smolin does not have suggestions for where these new physical principles should be sought. His statement that ‘no such principles have been proposed‘ (p8) is incorrect. Ourselves and others have proposed new physical principles – ours is called the Cordus theory and based on a proposed internal structure to particles. Other theories exist, see vixra and arxiv. The bigger issue is that physics journals are mostly deaf to propositions regarding new principles. Our own papers have been summarily rejected by editors many times  due to ‘lack of mathematical content’ or ‘we do not publish speculative material’, or ‘extraordinary claims require extraordinary evidence’. In an ideal world all candidate solutions would at least be admitted to scrutiny, but this does not actually happen and there are multiple existing ideas in the wilds that never make it through to the formal journal literature frequented by physicists.  Even then, those ideas that undergo peer review and are published, are not necessarily widely available. The problem is that the academic search engines, like Elsevier’s Compendex and Thompson’s Web of Science,  are selective in what journals they index, and fail to provide  reliable coverage of the more radical elements of physics. (Google Scholar appears to provide an unbiassed assay of the literature.) Most physicists would have to go out of their way to inform themselves of the protosciences and new propositions that circulate in the wild outside their bubbles of knowledge. Not all those proposals can possibly be right, but neither are they all necessarily wrong. In mitigation, the body of literature in physics has become so voluminous that it is impossible for any one physicist to be fully informed about all developments, even within a sub-field like fundamental physics. But the point remains that new principles of physics do exist, based on intuitive insights from natural phenomena, and which have high explanatory power, exactly how Smolin expected things to develop.
Smolin suspects that true solutions will have fewer rather than more symmetries. This is also consistent with our  work, which indicates that both the asymmetrical leptogenesis and baryogenesis processes can be conceptually explained as consequences of a single deeper symmetry (http://dx.doi.org/10.4236/jmp.2014.517193). That is the matter-antimatter species differentiation (http://dx.doi.org/10.4006/0836-1398-27.1.26). That also explains asymmetries in decay rates (http://dx.doi.org/10.5539/apr.v7n2p1).
In a way, though he does not use the words, Smolin tacitly endorses the principle of physical realism: that physical observable phenomena do have deeper causal mechanics involving parameters that exist objectively. He never mentions the hidden-variable solutions. Perhaps this is indicative of the position of most theorists, that the hidden variable sector has been unproductive. Everyone has given up on it as intractable, and now ignore it. According to Google Scholar, ours looks to be the only group left in the world that is publishing non-local hidden-variable (NLHV) solutions. Time will tell whether or not these are strong enough, but these do already embody Smolin’s injunction to take a fresh look for new physical principles.

Dirk Pons

26 February 2016, Christchurch, New Zealand

This is an expansion of a post at Physics Forum  https://www.physicsforums.com/threads/smolin-lessons-from-einsteins-discovery.849464/#post-5390859

References

[1] 1. Smolin, L.: Lessons from Einstein’s 1915 discovery of general relativity. arxiv 1512.07551, 1-14 (2015). doi: http://arxiv.org/abs/1512.07551

 

 

Advertisements

, , , , , , , , ,

Leave a comment

Time: There Already Are Answers If You Look A Little Wider. . .

Space vs time: One has to go – but which? This is the question asked by Anil Ananthaswamy at New Scientist asks. As he says, ‘If we want to progress towards a theory of everything, we need to understand how space and time fit together – if they do at all.’ He goes on to review the usual candidates: quantum mechanics and general relativity, and finds them wanting. Then he checks out string theory (and AdS/CFT) and then takes in loop quantum gravity. Ultimately there are no definitive answers. As he concludes, ‘Many potential ways around lead to different worlds of space and time – and we have as yet little clue which route to follow.’

Here’s our take on this subject, being a copy of our post at the NS article:

We have a theory that time is an emergent property of matter, as opposed to being a dimension of its own or a property of space. The idea being that particles of matter emit discrete forces at their de Broglie frequency, and these are meshed together over space to create a fabric of discrete fields. The particles then interact with each other via the discrete field forces that they send to and receive from this fabric, and since those interactions are not instantaneous (for reasons given in the theory), so the arrow of time emerges.

This is an unorthodox perspective, especially since it starts from a non-local hidden-variable (NLHV) solution, but it has the benefit of being able to explain everything that quantum mechanics, general relativity, LQG, and string/M theory can explain about time, and quite a lot more. We call this the Cordus theory. It becomes quite simple to explain why time as measured by atomic clocks is consistent with time as we perceive it as humans, how time dilation occurs, where the arrow (irreversibility) arises, how time began, whether time exists outside an expanding universe, and many other such niggly little questions at fundamental and cosmological levels.

I can’t explain the whole thing in one post – instead I just want to point out that there already are answers for pretty much all the questions raised in the article, providing one is prepared to be open-minded and look beyond the fixed mental models provided by the orthodox theories. According to this Cordus theory there is nothing wrong with QM and GR per se, it is just that they are situationally-accurate but merely special-case approximations of a deeper mechanics. The only reason time is such a quandary to QM and GR is because those theories have premises that limit what kind of solutions can be admitted. But at the deeper level it is easy to unify the forces, resolve wave-particle duality, and explain entanglement and locality. So there is a lot of progress being made in the unorthodox areas of physics, even if the mainstream has stagnated.

Of course we could also be wrong! Make up your own mind: See the full time paper here http://vixra.org/abs/1301.0074 or a simpler series of explanations here https://cordus.wordpress.com/category/time/.

Thank you

Dirk Pons

, , , , , , , , , ,

1 Comment

Which perspective of time is correct: the absolute clock of quantum mechanics or the spacetime of general relativity?

Neither, but in some ways both are adequate for their purposes.  According to the Cordus theory, time at the fundamental level is created by the local frequency of oscillation of the particule. That effect occurs internal to the particule concerned. Such particules include the electron, proton, etc. Since frequency and energy are related, this has the side effect of making time, as perceived at the particule level, speed up or slow down depending on the energy of the particule.

As a separate effect the arrow of time arises from the irreversibility in the interactions between particules.We explain how that irreversibility arises, but the explanation is a bit long for here.

Thus time is locally generated, and Cordus suggests the QM  idea of an absolute clock is only partlycorrect. Also, Cordus suggests that time is a patchwork at the cosmos scale, not a continuous spacetime, thereby not accepting this feature of GR either. However both QM and GR turn out to be approximately correct, at least at the level of detail that concerns them, which is submicroscopic and macroscopic respectively

English: Cordus model of the photon

English: Cordus model of the photon (Photo credit: Wikipedia)

The Cordus theory provides a more primitive mechanics for time that accommodates the thoroughly different models of QM and GR.

Read more here:

Pons, D.J. (2013) What really is time? A multiple-level ontological theory for time as a property of matter. vixra, 1-40 DOI: http://vixra.org/abs/1301.0074.


, , , , , ,

1 Comment

Reality and apparent simultaneity

One of the long-standing philosophical questions is whether there is a reality to what humans experience. One of the famously controversial ways to looking at this is the holographic principle, which proposes that everything we experience in 3D is merely a holographic projection of 2D information on the outside surface of the universe.

That raises a second question, which is how my experience of reality is connected and coordinated with yours. This introduces time into the problem. Special relativity (SR) has a principle, in the form of the relativity of simultaneity, that says that the order in time of two spatially separate events cannot be determined  absolutely, but instead depends on the motion of the observer. Thus it is impossible to order two events in time if they occur in different places (hence difference frames of reference).

In our Cordus theory of time, we examine some of these questions. We look at the question of how multiple bodies interact, and how the coordination arises. We have already identified that there is no master clock, but if that is lacking then we still need a coordination mechanism. There is a connectedness of phenomena that are at different geometric locations. It seems that spacetime is continuous, because it seems that it is possible to coordinate the two phenomena in time. We show that the two phenomena are linked, because they share the same fabric.

According to this new perspective, any communication between two objects is a result of photons, or massy particules, or fields, and these cause positional constraints on the other, i.e. the geometric location of the reactive end is affected by the communication. A phenomenon that occurs in one volume of matter, be that combustion, noise, motion, etc,  thereby communicates that to other matter around it. Consider one volume to be my body: my speaking transmits forces to the volume of air immediately around me, which in turn propagates the dynamic displacement throughout its bulk, so that the membrane in your ear is displaced, and you hear the sound.

In general the phenomenon is that one volume of matter causes an effect in the second. The interactions at the most basic level all require frequency cycles, so this causes temporal causality.  Thus we infer:

It is not a master clock that accomplishes the temporal connectedness of phenomena that are at different geometric locations, nor does it require continuity of spacetime per se. The piece-wise communication, via discrete field interactions of the fabric, between adjacent volumes of space (matter and fabric) applies spatial consistency to time.

Any one particule A receives discrete forces (fields) from all the particules (many Bs) in the observable universe. Space within the universe is therefore filled with a mesh of  discrete fields in transit, which in the Cordus theory is termed the fabric.

Fabric time is the mutual interconnectedness of matter particules spread over three-dimensional space. This occurs via the fabric, comprising discrete field forces for electric-magnetic-gravitational interaction. Not strictly a time, this is rather  a coordination of events across space.

In this theory the fabric, and the EMG fields it carries, causes a connectedness between particules. They respond together, even if in a slightly delayed manner as their separation increases. There is therefore a coherence and smoothness to the interaction between particules, mediated by the fabric. The resulting interaction stitches together three-dimensional domains of space (matter and vacuum-fabric) into a macroscopic collated time. This level of time passes more slowly, due to the many tiny delays required for particules to react to each other, given the dissimilar-frequency and phase-differences between the particules.  This, Cordus suggests, is where the arrow-of-time arises,  and what general relativity perceives as spacetime. This is also the macroscopic level of physical time, and hence where our perception of time first arises.

This Cordus concept of 3D fabric affirms the general relativity perspective of spacetime.  It also provides an ontological answer to one of the earlier questions: it suggests that spacetime has a quasi-substantial status (comprises discrete force) but has no universal time-signature per se, and mainly represents merely the relationships between bodies.

Read more about the Cordus time theory here:

Pons, D.J. (2013) What really is time? A multiple-level ontological theory for time as a property of matter. vixra, 1-40 DOI: http://vixra.org/abs/1301.0074.

, , , , , , , ,

3 Comments

Arrow of time

The ‘arrow of time’ refers to the one-way nature of time. Special and General relativity considers time to be a dimension, as in ‘spacetime’, in which case we should be able to go forward and backward in time, just like we can in the x, y, and z directions of space. But we can’t. Time does not behave like a full dimension. True, we move forward in time, but it is more that time drags us onwards than us voluntary moving forward. Nor can we move backwards in time. We can’t even stay still! We are forced forward along.

So, where does this irreversibility arise? After all, the fundamental physics says that it should be a two-way effect. This is one of the unsolved problems of physics, and has occupied many physicists, thermodynamicists, and philosophers. To be sure, there are a number of solutions, but they are only partial and there is no complete solution.

Here is the solution we have found within the Cordus theory. Remember that the Cordus conjecture is a non-local hidden-variable solution, which means that it proposes that particles have internal structures. By comparision all of conventional physics including quantum mechanics is buit on the assumption that particles are merely zero dimensional points without substance.

The Cordus theory for time proposes that Decoherence is the root cause of the Arrow.

Coherence, according to the Cordus theory, is two  or more particles synchronising their frequencies using the strong force, and this also requires a particular and consistent geometric arrangement. Thus time in coherent bodies, like superfluids and Bose-Einstein condensates, is proposed to be one single time pulse for the whole body.  However, when decoherence occurs, the individual particules are no longer synchronised and instead bond with the much less precise electrostatic force.

Specifically, we propose that the Arrow of Time arises because decoherence causes a time delay to be inserted into the functional interac

The Cordus theory explains the difference between coherent and decoherent (discoherent) objects. It then uses this to construct a theory for time, including the irreversibility thereof (arrow of time).

The Cordus theory explains the difference between coherent and decoherent (discoherent) objects. It then uses this to construct a theory for time, including the irreversibility thereof (arrow of time). (Click to see larger image)

tion of two or more domains (objects) of matter – whether or not those domains are individually coherent. This because the frequencies of the fundamental particules differ, so the faster oscillating domain will have to mark more ticks (hence more of its local time) before the slower responds. Since there is geometric separation, however small, then the finite speed of field propagation (c, speed of light) adds a further time delay. Consequently the one domain generally has done something different, e.g. responded to a third domain, before the second has fully responded. Therefore getting domains back into their initial positions becomes unlikely and statistically impossible as the number of participating domains increases. So what happens stays happened, and does not naturally self-repair. We sum this up as follows:

Decoherent assembly time is irreversible, hence the arrow of time arises at this level. This is because  the interaction between subassemblies is practically irreversible due to intervening changes, propagation delays, and the complexity of large number of participating particules. This is also where and why entropy arises.

Hence classical mechanics and decoherence arise at the same point in the assembly tree of matter. The macroscopic perception of time arises at the same point, as does entropy.

While reversibility seems feasible at simple levels, we never see this for macroscopic bodies. This is because such bodies are decoherent. More accurately, their relationship with their external environment is decoherent even if their internal bonding arrangements are coherent.

Macroscopic bodies invariably have decoherent relationships between them. Such bodies, regardless of whether they are internally governed by coherent or decoherent relationships (bonds), interact inelastically with their environment, in that such bodies do not return to precisely their initial states. Inability for one body to return thereby means that all the other bodies in the accessible universe cannot either, because the fabric of background discrete forces has been changed.

Read more about the Cordus time theory here:

Pons, D.J. (2013) What really is time? A multiple-level ontological theory for time as a property of matter. vixra, 1-40 DOI: http://vixra.org/abs/1301.0074.

, , , ,

4 Comments

How does time-dilation work?

Schematic representation of asymmetric velocit...

Schematic representation of asymmetric velocity time dilation. The animation represents motion as mapped in a Minkowski space-time diagram, with two dimensions of space, (the horizontal plane) and position in time vertically. The circles represent clocks, counting lapse of proper time. The Minkowski coordinate system is co-moving with the non-accelerating clock. (Photo credit: Wikipedia)

We have an alternative way to explain this effect.

First, some background. Time-dilation is when clocks at different locations run at different speeds,  because of the different conditions at the two locations. Specifically, time passes slower in regions of  higher gravity (and faster in lower gravity). Likewise time runs slower for systems with higher acceleration, and faster in lower acceleration.

This has nothing to do with errors in the clocks. Nor does it matter what type of clock is used, mechanical or atomic. Instead time really does run differently, and it affects life itself. It is somewhat weird to think that your feet (which are in a slightly higher gravitational field) age slower than your head, but nonetheless your body still holds together! OK, the differences are not great, but it is the principle that counts. And the twin-paradox is downright spooky too.

The usual explanations for this involve the Lorentz equations, which allow the effect to be represented mathematically and quantified. But a deep explanation of what *is* time dilation is still lacking. It’s thought to be a property of spacetime, but that is only a partial explanation as spacetime itself is a mathematical model.

Moving beyond mathematical models and into ontological explanations is what the Cordus conjecture does well, and here again we have an alternative explanation. This offers an explanation of how time-dilation occurs at the subatomic level and then scales up to chemical bonds and ultimately to the mechanics of moving clock-hands and the physiology of living bodies.

For a start, we accept that time dilation does occur, and we accept also that atomic clocks do show a physical representation of that effect (as opposed to some other effect). Then we apply the Cordus model, whereby each particule has two ends which are energised in turn at its frequency. Now, (this next bit is important) energisation involves pushing discrete forces out into the external environment. So the frequency at which  this happens is affected by the conditions in the external environment. That external environment is the 3D world beyond the particule, and it does not matter if it is only a vacuum. (The Cordus fabric is the substitute concept for the spacetime of general relativity).

The external environment is what we call the fabric, and it comprises the discrete forces of all the other particules in the observable universe. All of which are likewise trying to push out discrete forces at their own individual frequencies. So what this Cordus theory offers is a way to understand the causality from the inner workings of the particle (the hidden-variables), to the discrete forces being produced at a frequency, to the cumulative effect (fields) of many particules affecting each other. The important insight provided by the Cordus theory is that the causality works in the reverse direction too. Thus the fabric, which is the cumulative effect of the discrete forces of many particules, has a way to cause the frequency of one particule to change. If we also adopt the Cordus idea that frequency *is* time for the particule concerned, then an explanation for time dilation is immediately  available.  Here it is:

The Cordus theory of time provides a mechanism whereby the external environment can push back in and affect the frequency of the particule. The proposed mechanism is as follows. An encounter with greater fabric density causes the frequency of a particule to slow down, hence time runs slower. This is because the high density of external discrete forces makes it difficult for the particule to emit its own discrete forces > emission is retarded >  energisation of reactive end is delayed > frequency lengthens.

It is known from general relativity that a body experiences time dilation in any of the following three situations: relativistic velocity, or acceleration, or in a high gravitation field. According to the Cordus time theory, all these are situations of  greater fabric density: the first because the fast-moving particule is at a speed approaching that of the fabric itself and therefore emission of the particule’s discrete forces is resisted (from the perspective of the particule, the external fabric is saturated),  the second because the accelerating particule emits discrete forces which it then moves into, thus creating its own locally high fabric density, and the third because high gravitation field is intrinsically a high external fabric density. In all these situations higher fabric density causes slowing of time. So Cordus also provides a single underlying mechanism for why these three situations are equivalent.

So to summarise, we have a mechanism to explain why the frequency of a particule is affected by velocity, acceleration, or gravitational field. How then does time dilation occur? Well, that’s also easy to explain, though it needs another piece of the Cordus theory. This is that the frequency of a particle determines the moments in time at which its discrete forces are available to interact with other particules. Particules only interact via their discrete forces. Those interactions are the basis for the strong force, chemical bonds, and the electro-magnetic-gravitational forces. (Cordus also provides a theory for the unification of the forces/interactions.) In turn these interactions determine the atomic structure, chemistry, kinetics and kinematics of the particule. And physiology is built on chemistry.

So anything, like fabric density,  that changes the frequency of a particule automatically changes the frequency of all of the mechanics, chemistry, and even life processes, with which that particule is engaged. This is what the fabric does, and it does it to whole assemblies of matter at once. Higher fabric density slows down the frequencies of all the particules in the object in that volume of space. And since, according to the Cordus theory, time  for a particule (or bonded assembly of particules) is nothing more than its frequency, when the frequency changes the passage of time also changes.

So that is why time-dilation is not simply a measurement effect, or a problem with mechanical time-pieces. Instead it slows down (or speeds up) the passage of time for all particules in that volume of space.

This understanding of time-dilation requires the Cordus theories for:

  • Frequency and internal structure of particules
  • discrete forces,
  • strong force
  • force unification,
  • time at the level of single particules
  • fabric concept

The existing theories of physics do not have this breadth of coverage, so if all of these really are necessary to explain time-dilation then one can see why Quantum Mechanics and General Relativity would struggle to explain it.

This Cordus explanation applies equally to a living body experiencing time-dilation. Thinking is a chemical process and Aging is a physiological process of chemical degradation, so any process that slows the frequency of the components of the atoms will also slow time. But this is no solution for longevity, because such a person would not experience any advantage, because their thoughts and movements would also be slowed. They would not be able to do anything more with their time. The only effect is that they would notice on meeting is that other people’s histories were compressed (or stretched).

Read more here:

Pons, D.J. (2013) What really is time? A multiple-level ontological theory for time as a property of matter. vixra, 1-40 DOI: http://vixra.org/abs/1301.0074.

, , , , , , ,

4 Comments

What is Space-time?

Special relativity (SR) is based on  the relativity of simultaneity, that the order in time of two spatially separate events cannot be determined  absolutely, but instead depends on the motion of the observer. Thus it is impossible to order two events in time if they occur in different places (hence difference frames of reference). There is no preferred inertial frame in SR.

English: Schematic view of Einstein's train th...

English: Schematic view of Einstein’s train thought experiment, with two lightnings striking both ends of the moving train simultaneously (as perceived in the stationary observer’s inertial frame). Event simultaneity differences are shown for both inertial frames, supported by Minkowski diagrams (not in scale). (Photo credit: Wikipedia)

The Cordus theories of time and the fabric affirm SR’s principle of the relativity of simultaneity, that time can flow at different speeds for people in different situations. However there are some deeper implications from the Cordus perspective.

The first is that time is not an inherent property of space. Cordus rejects the General relativity (GR) idea of spacetime having a substantial dimensional status comparable to the three geometric axes, and instead sees the fabric as being the relationships between bodies.  Complementary to this is another implication, that time is a property of matter rather than space. Recall that the Cordus theory is that the fundamental level of time is the frequency oscillation of the particule, and the assembly of multiple particules.

This has a further implication that each assembly of matter has its own time (SR: frame of reference) which via the fabric blends discretely into that of other neighbouring matter. Hence the connectedness of the cordus fabric, which provides a mechanism whereby spatially separated bodies appraise each other about their position and state. This corresponds loosely to the GR concept of a smooth spacetime, except that the Cordus fabric is made up of discrete field elements that only appear to be smooth at the macroscopic level. A further implication is that spatially separate bodies have their own time, and Cordus provides a mechanism whereby that fundamental time aggregates into the physical behaviour of a clock. So the question of how time, as measured by say an atomic clock or mechanical timepiece connects to the underlying time, is answered.

This leads to another implication of the Cordus theory, which is that all the separate bodies in the universe, hence also clocks and frames of reference, were once synchronised  in the past.  The primary synchronisation was at the genesis of matter,  when matter was formed from photons. There is a Cordus explanation for this asymmetrical baryogenesis too.  As this matter separated in the formation of the universe, so it carried its clocks with it. Thus there is a branching of times (SR: frames of reference), and this also means they can all be traced back in a family tree. Therefore Cordus only conditionally supports the SP principle of relativity of simultaneity. Cordus suggests that there is a temporal relationship between different frames of reference, that the time for each body (collection of particules) represents its cumulative journey through past space and time (i.e. world-line) and that all frames can therefore be referenced back to the primal genesis event. Not that mere inspection of the matter in any one frame reveals that journey, only the sum thereof. So Cordus suggests that the temporal relationships between inertial frames of reference are not really arbitrary, but rather unapparent. Thus the relationship between two inertial clocks is not simply a convention, though it can be for convenience if the observer is willing to accept the differences as a calibration offset. While the two separate inertial clocks may each have their own time, it is generally not possible to see what this is, so the simultaneity can in practice be set by the observer’s choice. So Cordus rejects the conventionality of simultaneity in principle, but allows it in practice.

What does this mean? Well, it shows that it is possible to connect relativity (both special and general) with particle physics. We achieve this through a specific non-local hidden-variable (NLHV) solution called the cordus conjecture.

This integrates the apparently conflicting nature of the different times suggested by  quantum mechanics, electromagnetic theory, and relativity. Surprisingly, it is not so much that one of these theories is correct and the others wrong, but instead it is shown that they all have a piece of truth. The Cordus theory shows that time is all of particle-based vs. spacetime, relative vs. absolute, local vs. universal. However it is not simultaneously all of those, but rather depends on the level of assembly being considered. We therefore suggest that none of the existing physical theories have got time quite right, even if they are all right in part. Instead Cordus suggests that there is a deeper common causality.

, , , , , , , ,

Leave a comment