Archive for category Philosophy and Physics

Beautiful mathematics vs. qualitative insights

Which is better for fundamental physics: beautiful mathematics based on pure concepts, or qualitative insights based on natural phenomena?

According to Lee Smolin in a 2015 arxiv paper [1], it’s the latter.

As I understand him, Smolin’s main point is that elegant qualitative explanations are more valuable than beautiful mathematics, that physics fails to progress when ‘mathematics [is used] as a substitute for insight into nature‘ (p13).
‘The point is not how beautiful the equations are, it is how minimal the assumptions needed and how elegant the explanations.‘ (http://arxiv.org/abs/1512.07551)
The symmetry methodology receives criticism for the proliferation of assumptions it requires, and the lack of explanatory power. Likewise particle supersymmetry is  identified as having the same failings. Smolin is also critical of of string theory, writing, ‘Thousands of theorists have spent decades studying these [string theory] ideas, and there is not yet a single connection with experiment‘ (p6-7).

Mathematical symmetries: More or fewer?

Smolin is especially critical of the idea that progress might be found in increasingly elaborate mathematical symmetries.
I also wonder whether the ‘symmetries’ idea is overloaded. The basic concept of symmetry is that some attribute of the system should be preserved when transformed about some dimension. Even if it is possible to represent this mathematically, we should still be prudent about which attributes, transformations, and dimensions to accept. Actual physics does not necessarily follow mathematical representation. There is generally a lack of critical evaluation of the validity of specific attributes, transformations, and dimensions for the proposed symmetries. The *time* variable is a case in point. Mathematical treatments invariably consider it to be a dimension, yet empirical evidence overwhelmingly shows this not to be the case.
Irreversibility shows that time does not evidence symmetry. The time dimension cannot be traversed in a controlled manner, neither forward and especially not backward. Also, a complex system of particles will not spontaneously revert to its former configuration.   Consequently *time* cannot be considered to be a dimension about which it is valid to apply a symmetry transformation even when one exists mathematically. Logically, we should therefore discard any mathematical symmetry that has a time dimension to it. That reduces the field considerably, since many symmetries have a temporal component.
Alternatively, if we are to continue to rely on temporal symmetries, it will be necessary to understand how the mechanics of irreversibility arises, and why those symmetries are exempt therefrom. I accept that relativity considers time to be a dimension, and has achieved significant theoretical advances with that premise. However relativity is also a theory of macroscopic interactions, and it is possible that assuming time to be a dimension is a sufficiently accurate premise at this scale, but not at others. Our own work suggests that time could be an emergent property of matter, rather than a dimension (http://dx.doi.org/10.5539/apr.v5n6p23).  This makes it much easier to explain the origins of the arrow of time and of irreversibility. So it can be fruitful, in an ontological way, to be sceptical of the idea that mathematical formalisms of symmetry are necessarily valid representations of actual physics. It might be reading too much into Smolin’s meaning when he says that ‘time… properties reflect the positions … of matter in the universe’ (p12), but that seems consistent with our proposition.

How to find a better physics?

The solution, Smolin says, is to ‘begin with new physical principles‘ (p8). Thus we should expect new physics will emerge by developing qualitative explanations based on intuitive insights from natural phenomena, rather than trying to extend existing mathematics. Explanations that are valuable are those that are efficient (fewer parameters, less tuning, and not involving extremely big or small numbers) and logically consistent with physical realism (‘tell a coherent story’). It is necessary that the explanations come first, and the mathematics follows later as a subordinate activity to formalise and represent those insights.
However it is not so easy to do that in practice, and Smolin does not have suggestions for where these new physical principles should be sought. His statement that ‘no such principles have been proposed‘ (p8) is incorrect. Ourselves and others have proposed new physical principles – ours is called the Cordus theory and based on a proposed internal structure to particles. Other theories exist, see vixra and arxiv. The bigger issue is that physics journals are mostly deaf to propositions regarding new principles. Our own papers have been summarily rejected by editors many times  due to ‘lack of mathematical content’ or ‘we do not publish speculative material’, or ‘extraordinary claims require extraordinary evidence’. In an ideal world all candidate solutions would at least be admitted to scrutiny, but this does not actually happen and there are multiple existing ideas in the wilds that never make it through to the formal journal literature frequented by physicists.  Even then, those ideas that undergo peer review and are published, are not necessarily widely available. The problem is that the academic search engines, like Elsevier’s Compendex and Thompson’s Web of Science,  are selective in what journals they index, and fail to provide  reliable coverage of the more radical elements of physics. (Google Scholar appears to provide an unbiassed assay of the literature.) Most physicists would have to go out of their way to inform themselves of the protosciences and new propositions that circulate in the wild outside their bubbles of knowledge. Not all those proposals can possibly be right, but neither are they all necessarily wrong. In mitigation, the body of literature in physics has become so voluminous that it is impossible for any one physicist to be fully informed about all developments, even within a sub-field like fundamental physics. But the point remains that new principles of physics do exist, based on intuitive insights from natural phenomena, and which have high explanatory power, exactly how Smolin expected things to develop.
Smolin suspects that true solutions will have fewer rather than more symmetries. This is also consistent with our  work, which indicates that both the asymmetrical leptogenesis and baryogenesis processes can be conceptually explained as consequences of a single deeper symmetry (http://dx.doi.org/10.4236/jmp.2014.517193). That is the matter-antimatter species differentiation (http://dx.doi.org/10.4006/0836-1398-27.1.26). That also explains asymmetries in decay rates (http://dx.doi.org/10.5539/apr.v7n2p1).
In a way, though he does not use the words, Smolin tacitly endorses the principle of physical realism: that physical observable phenomena do have deeper causal mechanics involving parameters that exist objectively. He never mentions the hidden-variable solutions. Perhaps this is indicative of the position of most theorists, that the hidden variable sector has been unproductive. Everyone has given up on it as intractable, and now ignore it. According to Google Scholar, ours looks to be the only group left in the world that is publishing non-local hidden-variable (NLHV) solutions. Time will tell whether or not these are strong enough, but these do already embody Smolin’s injunction to take a fresh look for new physical principles.

Dirk Pons

26 February 2016, Christchurch, New Zealand

This is an expansion of a post at Physics Forum  https://www.physicsforums.com/threads/smolin-lessons-from-einsteins-discovery.849464/#post-5390859

References

[1] 1. Smolin, L.: Lessons from Einstein’s 1915 discovery of general relativity. arxiv 1512.07551, 1-14 (2015). doi: http://arxiv.org/abs/1512.07551

 

 

, , , , , , , , ,

Leave a comment

What does the fine structure constant represent?

Fine structure constant α

This is a dimensionless constant, represented with the symbol α (alpha), and it relates together the electric charge, the vacuum permittivity, and the speed of light.

The equation is as follows:

The impedance of free space is Zo = 1/(εoc) = 2αh/e2, with electric constant εo (also called vacuum permittivity), the speed of light in the vacuum c, and the fine structure constant α = e2/(2εohc), with elementary charge e [coulombs], Planck constant h, and c as before. All these are generally considered physical constants, i.e. are fixed values for the universe.

One example of how this relationship may be used is as follows. Given the electric charge, and the vacuum permittivity, then the alpha equation may be used to explain why the speed of light has the value it does. The equation may be rearranged into other equivalent forms.

 What is the physical meaning of the fine structure constant?

This is a more difficult question, especially when coupled with the question, Why does alpha take the value it does? This is something of a mystery.

We believe we can answer some parts of this question. In a recent paper of the Cordus theory  it has been proposed that both the vacuum permittivity and the speed of light are dependent variables, and situationally specific. It is proposed that εo represents the density of the discrete forces in the fabric, and thus depends on the spatial distribution of mass within the universe. Thus the electric constant is recast as an emergent property of the fabric, and hence of matter.

From this perspective α is a measure of the transmission efficacy of the fabric, i.e. it determines the relationship between the electric constant of the vacuum fabric, and the speed of propagation c through the fabric.

This is consistent with the observation that α appears wherever electrical forces and propagation of fields occur, and this includes cases such as electron bonding.

The reason the speed of light is limited to a certain finite value is explained by this theory as a consequence of the fabric density creating a temporal impedance. Thus denser fabric results in a slower speed of light, and this is consistent with time dilation, and optical refraction generally. In the Cordus theory the speed of light in turn is determined by the density of the fabric discrete forces and is therefore locally consistent and relativistic, but ultimately dependent on the past history of matter density in the locally available universe. Thus the vacuum (fabric) has a finite speed of light, despite an instantaneous communication across the fibril of the particule. This Cordus theory is consistent with the known impedance of free space though comes at it from a novel direction.

The implications are the electric constant of free space is not actually constant, but rather depends on the fabric density, hence on the spatial distribution of matter. The fabric density also determines the speed of light in the situation, and α is the factor that relates the two for this universe. It would appear to be a factor set at genesis of the universe.

Reference

Pons, D. J. (2015). Inner process of Photon emission and absorption. Applied Physics Research, 7(4 ), 14-26. doi:http://dx.doi.org/10.5539/apr.v7n4p24

, ,

Leave a comment

Free-will compromised on a grand scale: Can the universe be controlled from outside?

Most of the developments of the Cordus theory have focussed on fundamental physics, e.g. the proposed inner structure of the fundamental particles and that of the nuclides (isotopes). However the theory also has cosmological implications. We have explored some of these in the theory for time, and that of the cosmological frontier (the outer edge of the universe).

These start to raise some interesting philosophical questions. In particular, the implications for free-will. In this post I explore some of these, starting at the cosmological level.

The explicit implication of the conventional idea of the cosmological horizon is that the inner universe of 3D matter could be controlled from outside, by an intelligent Agent that could access the outer 2D horizon. This philosophically thought-provoking idea has significant existential implications for reality.  The Cordus theory rejects this as a fanciful notion, for the following reasons.

First, the Agent would need to control the whole entire horizon simultaneously (as opposed to only one patch). This task is physically infeasible, given the size of the universe, and the necessary coordinated control would need to be instantaneous to have any useful control purpose. This excludes any physical Agent.

Second, a physical Agent is further excluded because such an Agent, positioned around the cosmological boundary, would therefore become part of the process whereby the vacuum of the universe colonises the wider void. (The Cordus theory proposes that time is created by the existence of matter, and therefore time does not exist outside the cosmological horizon). Thus a matter-based Agent would create time and therefore become part of the universe being measured and controlled, and the unidirectional causality could not be maintained. It is therefore not possible, according to the Cordus theory, to have an independent physical Agent, observer, or even inanimate instrumentation, at the boundary. The Cordus theory shows that the act of observation changes the system, i.e. observation is necessarily contextual. This applies to photons in double-slit and interferometer apparatus. In the case of the cosmological boundary there is a similar principle, except here the addition of the Agent adds to the system under observation.

The third objection is that there is, according to the Cordus theory, no bidirectional causality between the 2D surface and the inner 3D volume anyway. Even if there was a non-physical (metaphysical) Agent at the boundary, one nonetheless able to meddle with the discrete forces protruding from the expanding universe, such a frontier interaction would do nothing to change the emitting particule way back in the depths of the universe. This interpretation arises because the Cordus theory suggests that discrete fields are unilateral interactions with mono-directional causality: they are not conduits for bi-directional force transfer.[1] Consequently, the discrete field pulses that are received at any inspection point remote from the emitting body are a force on any matter at that inspection point, and have no reciprocal effect back on the emitting body.

The only way for an Agent on the boundary to change the particules inside the universe is for the Agent to emit its own discrete fields back into the universe to target those particules. However this would require a physical agent (which we already exclude) to generate the discrete fields. This is because discrete fields are a feature of matter, and do not have an independent pre-existence. There is a further obstacle too: even if it were somehow possible to generate discrete fields without matter, these would take time to arrive at their target within the universe, thereby adding a practical limitation to the efficacy of the control.

So there are three objections to the holographic control idea, the most fundamental of which is that simply intercepting the discrete fields of the original emitting particule is insufficient for controlling that particule. The universe can therefore not be controlled from its boundary, under this theory.  The Cordus theory excludes the possibility of placing a physical Agent at the boundary of the universe, and of such an Agent having any practical  way to control the universe from the outside. The control aspects of the holographic principle are therefore rejected.

We have not excluded the possibility that a metaphysical Being or Deity may be able to achieve this level of control, but even this seems unlikely for two reasons. One, it is unclear how a metaphysical Being could create or interfere with the discrete forces protruding from the frontier. More importantly, such manipulation would take ages to propagate back to their target in the physical universe, so the control effect would lack immediacy.

So the conclusion we reach, is that the Cordus theory rejects the idea that free-will may be compromised on a grand scale by an Agent controlling the whole universe from its outer surface. We have not proved that free-will exists, but simply shown that the cosmological frontier is not relevant to consideration of free-will under this theory.

[This post has looked at the cosmological scale at its widest, just for the fun of it. I would like to come back to this in future work, by starting at the opposite end of the scale, by examining the implications of this theory  for determinism at the fundamental level. ]

Read the full paper (open access) here:

Pons DJ, Pons A, D. (2013) Outer boundary of the expanding cosmos: Discrete fields and implications for the holographic principle The Open Astronomy Journal 6:77-89. doi: http://dx.doi.org/10.2174/1874381101306010077


[1] The idea that forces like gravitation are bidirectional is a tacit assumption in classical mechanics. The relation for gravitation, F = G ma mb /r2 specifically identifies that the force depends on both masses, not one. The Cordus theory accepts this at the macroscopic level, but suggests that the effect is not a bidirectional force conduit between the two masses, but rather two independent effects that are aggregated.  More specifically, that discrete fields emitted from source A cause their recipient target  B to experience prescribed constraints on the re-energisation location of its reactive ends, and this is what we perceive as force. The recipient body B also sends out its own discrete fields, some of which are intercepted by A, and the mutual attraction/repulsion of the EMG forces arises by a combination of the individual unilateral effects. Simple passive access of field information does not necessitate control of the emitting source, according to the Cordus theory.

, , ,

Leave a comment

Will time end, Why, and When?

Illustration of spacetime curvature.

Illustration of spacetime curvature. (Photo credit: Wikipedia)

The answer to that question depends on what theory you adopt for *time*. In the particular case of the Cordus theory, time is caused by matter, i.e. time is an emergent property of matter, especially discoherent matter.

This is a very different proposition to practically every other  theory of time. The main other theory is to link SPACE and TIME together in the SPACE-TIME concept. This also means that such theories are locked into a concept where time is a continuous variable, and is a dimension. Therein lie a lot of deep problems: first that a continuous or ratio variable is not easy to break into discrete units, and hence the difficulty of reconciling the *time* concepts in general & special relativity with quantum mechanics; second that a dimension implies something that can go backward or forward, and it is not at all apparent that time actually does that, and no one really knows why.

The Cordus theory is different in that it proposes that *time* is the interaction of cause and effect between two pieces of discoherent matter. It provides a natural explanation for the tick of time, rooted in what might generally be considered the de Broglie frequency of matter, and for the one-way direction or arrow of time. The Cordus theory also predicts that time does not work this way for coherent assemblies of matter, which may be falsifiable.  (Coherent matter is a very specialised state of matter that includes superfluids and Bose-Einstein condensates, and is not something that is typically encountered at the macroscopic level of our daily existence).

With that in mind, what does the Cordus theory say about the end of time? Well, with time being a property of matter, it implies that time emerges with matter at genesis, and shares the same fate. Therefore time as we know it will cease when the universe does.

Just how the universe will end is another question altogether. One option is that it will continue to expand, and eventually just wimp out (heat death), in which case Cordus theory predicts time would just slow down to a crawl too. The other option is that the universe collapses in on itself, in which case Cordus theory suggests time would speed up and then suddenly stop altogether. There is a third option, which no-one believes, which is that the universe is static. That seems ruled out by the red-shift.

Those outcomes are unimaginably far into the future, and there are more proximal existential threats to worry about. More interesting to us in the present epoch of the universe, is another curious prediction of the Cordus time theory. This is that there is no time (as we know it) outside the universe, i.e. beyond the cosmological boundary (DOI: http://vixra.org/abs/1303.0017.). This  means that there is no time in the void into which the universe is expanding. Likewise for a being outside the universe (God) there need be no time either (atemporal). There are some interesting philosophical implications of this. We will leave that discussion for another day.

Read more about the Cordus theory here:

Pons, D.J. (2013) What really is time? A multiple-level ontological theory for time as a property of matter. vixra, 1-40 DOI: http://vixra.org/abs/1301.0074.

Pons, D.J. and A.D. Pons (2013) Outer boundary of the expanding cosmos: Discrete fields and implications for the holographic principle vixra (1303.0017), p. 1-26, DOI: http://vixra.org/abs/1303.0017. Available from: http://vixra.org/pdf/1303.0017v1.pdf.

, , , , ,

Leave a comment

Which perspective of time is correct: the absolute clock of quantum mechanics or the spacetime of general relativity?

Neither, but in some ways both are adequate for their purposes.  According to the Cordus theory, time at the fundamental level is created by the local frequency of oscillation of the particule. That effect occurs internal to the particule concerned. Such particules include the electron, proton, etc. Since frequency and energy are related, this has the side effect of making time, as perceived at the particule level, speed up or slow down depending on the energy of the particule.

As a separate effect the arrow of time arises from the irreversibility in the interactions between particules.We explain how that irreversibility arises, but the explanation is a bit long for here.

Thus time is locally generated, and Cordus suggests the QM  idea of an absolute clock is only partlycorrect. Also, Cordus suggests that time is a patchwork at the cosmos scale, not a continuous spacetime, thereby not accepting this feature of GR either. However both QM and GR turn out to be approximately correct, at least at the level of detail that concerns them, which is submicroscopic and macroscopic respectively

English: Cordus model of the photon

English: Cordus model of the photon (Photo credit: Wikipedia)

The Cordus theory provides a more primitive mechanics for time that accommodates the thoroughly different models of QM and GR.

Read more here:

Pons, D.J. (2013) What really is time? A multiple-level ontological theory for time as a property of matter. vixra, 1-40 DOI: http://vixra.org/abs/1301.0074.


, , , , , ,

1 Comment

Reality and apparent simultaneity

One of the long-standing philosophical questions is whether there is a reality to what humans experience. One of the famously controversial ways to looking at this is the holographic principle, which proposes that everything we experience in 3D is merely a holographic projection of 2D information on the outside surface of the universe.

That raises a second question, which is how my experience of reality is connected and coordinated with yours. This introduces time into the problem. Special relativity (SR) has a principle, in the form of the relativity of simultaneity, that says that the order in time of two spatially separate events cannot be determined  absolutely, but instead depends on the motion of the observer. Thus it is impossible to order two events in time if they occur in different places (hence difference frames of reference).

In our Cordus theory of time, we examine some of these questions. We look at the question of how multiple bodies interact, and how the coordination arises. We have already identified that there is no master clock, but if that is lacking then we still need a coordination mechanism. There is a connectedness of phenomena that are at different geometric locations. It seems that spacetime is continuous, because it seems that it is possible to coordinate the two phenomena in time. We show that the two phenomena are linked, because they share the same fabric.

According to this new perspective, any communication between two objects is a result of photons, or massy particules, or fields, and these cause positional constraints on the other, i.e. the geometric location of the reactive end is affected by the communication. A phenomenon that occurs in one volume of matter, be that combustion, noise, motion, etc,  thereby communicates that to other matter around it. Consider one volume to be my body: my speaking transmits forces to the volume of air immediately around me, which in turn propagates the dynamic displacement throughout its bulk, so that the membrane in your ear is displaced, and you hear the sound.

In general the phenomenon is that one volume of matter causes an effect in the second. The interactions at the most basic level all require frequency cycles, so this causes temporal causality.  Thus we infer:

It is not a master clock that accomplishes the temporal connectedness of phenomena that are at different geometric locations, nor does it require continuity of spacetime per se. The piece-wise communication, via discrete field interactions of the fabric, between adjacent volumes of space (matter and fabric) applies spatial consistency to time.

Any one particule A receives discrete forces (fields) from all the particules (many Bs) in the observable universe. Space within the universe is therefore filled with a mesh of  discrete fields in transit, which in the Cordus theory is termed the fabric.

Fabric time is the mutual interconnectedness of matter particules spread over three-dimensional space. This occurs via the fabric, comprising discrete field forces for electric-magnetic-gravitational interaction. Not strictly a time, this is rather  a coordination of events across space.

In this theory the fabric, and the EMG fields it carries, causes a connectedness between particules. They respond together, even if in a slightly delayed manner as their separation increases. There is therefore a coherence and smoothness to the interaction between particules, mediated by the fabric. The resulting interaction stitches together three-dimensional domains of space (matter and vacuum-fabric) into a macroscopic collated time. This level of time passes more slowly, due to the many tiny delays required for particules to react to each other, given the dissimilar-frequency and phase-differences between the particules.  This, Cordus suggests, is where the arrow-of-time arises,  and what general relativity perceives as spacetime. This is also the macroscopic level of physical time, and hence where our perception of time first arises.

This Cordus concept of 3D fabric affirms the general relativity perspective of spacetime.  It also provides an ontological answer to one of the earlier questions: it suggests that spacetime has a quasi-substantial status (comprises discrete force) but has no universal time-signature per se, and mainly represents merely the relationships between bodies.

Read more about the Cordus time theory here:

Pons, D.J. (2013) What really is time? A multiple-level ontological theory for time as a property of matter. vixra, 1-40 DOI: http://vixra.org/abs/1301.0074.

, , , , , , , ,

3 Comments

Holographic principle

The holographic principle is that the information content of all the matter that has fallen into a black hole can be represented by fluctuations in the surface of the event horizon. Extending this to the universe as a whole, the principle suggests that the two-dimensional (2-D) information on the outside surface of the universe, the cosmological boundary, encodes for the whole three-dimensional (3-D) content of the universe within.

However that is all a bit spooky and weird. Nor is it clear how such a mechanism might work physically. If it were true, it would mean we were all just puppets being controlled from the outside layer of the universe.

Shell structure and the cosmological boundary of the universe as it expands into the void. (Image DPons).

Shell structure and the cosmological boundary of the universe as it expands into the void. (Image DPons). CLICK TO ENLARGE

In this paper we provide a physical interpretation of the holographic principle. We  start by developing an explanation for the vacuum, which is also not all that well understood. In turn that gives us some clues about the composition of  void into which the universe expands. Interestingly, this theory predicts that the outside void is  without time, and explains why. Of course it helps that we have separately developed a theory for how time works, which covers the whole range from subatomic particles, to atomic clocks, to mechanical clocks, to macroscopic bodies, and even to living creatures.

From this perspective the cosmological boundary is therefore the expanding surface where the fabric of the vacuum colonises the void beyond the universe. Thus the cosmological boundary is proposed to contain the discrete field elements of all the primal particules within the universe, and therefore contains information about the attributes of those particules at genesis. Inner shells then code for the changed locations of those particules and any new, or annihilated, particules.

So this theory supports the idea of an outer  boundary or frontier for the expanding universe, and even predicts what is on either side of that boundary.

However it also predicts there is no practical way that anyone could sit at that frontier and control the whole universe. So the theory rejects the  notion of holographic control of inner contents of the universe from the outer surface. (The details about this are in the paper, but basically concern the the infeasibility of placing a physical Agent at the boundary of the universe, and the useless of doing so in the first place). It also rejects the more fanciful holographic notions, e.g.  that the boundary contains information about the future and past, or about all possible universes. The Cordus model suggests that there is no causality (control) from the boundary of the universe to its inner contents. The boundary is merely a historical snap-shot of what the universe was like at genesis.

So you can rest easy: the real you is not merely a flat 2D shape on the outer edge of the universe. According to this theory, there is no-one at the edge of the universe pulling the strings and making you dance.

Read more:

Pons, D.J. and A.D. Pons (2013) Outer boundary of the expanding cosmos: Discrete fields and implications for the holographic principle vixra (1303.0017), p. 1-26, DOI: http://vixra.org/abs/1303.0017. Available from: http://vixra.org/pdf/1303.0017v1.pdf.

, , ,

3 Comments