# Archive for category Nuclear mechanics

### How does the synchronous interaction, or strong nuclear force, attract nucleons and hold the nucleus together?

Posted by Dirk Pons in Matter, coherence, nuclear physics, Nuclear mechanics, Nuclear structure, stability on July 19, 2015

The Cordus theory of the synchronous interaction is key to the concept of the nuclear polymer.

## How does the strong force work?

Conventionally the strong nuclear force is proposed to arise by the exchange of gluons of various colour. The theory for this is quantum chromodynamics (QCD). This force is then proposed to be much stronger in attraction than the electrostatic repulsion of protons of like charge, hence ‘strong’. Rather strangely, the theory requires the force to change and become repulsive at close range. This is to prevent it from collapsing the protons into a singularity (single point). Quite how this change operates is not explained, and the theory as a whole also cannot explain even the simplest atomic nucleus, let alone any of the features of the the table of nuclides. So there is a large gap between the colour force of QCD and any realistic explanation of atomic structure. QCD, gluons, and the strong attraction-repulsion force have no proven external validity: the concepts don’t extend to explain anything else.

It is time to attempt a different approach. Remember, it is necessary to explain not only how the quarks are bonded, but also how the protons and neutrons are bonded, and onward to explain why any one nuclide is stable/unstable/non-existent. That means seeking explanations to the bigger picture, rather than creating a narrowly-focussed mathematical model of one tiny part of the problem.

## What holds protons and neutrons together in the nucleus?

Here is our progress so far. First, note that conventionally the strong nuclear force overcomes the electrostatic repulsion of protons. In contrast the Cordus theory proposes that the protons and neutrons are locked together by *synchronisation *of their emitted electrostatic forces. These forces are proposed to be *discrete. * This is a radically different mechanism that has nothing to do with the electrostatic force.

‘The Cordus theory proposes that the strong force arises from the synchronisation of discrete forces between the reactive ends of different particules. The emission directions represent the particule’s directional engagement with the external environment, and so two particules that co-locate one of each of their reactive ends need to share this access, and this is proposed as the basis for the synchronicity requirement. This causes the emission of the particules’ discrete forces to be interlocked. The discrete forces cause the reactive ends to be pulled into (or repelled from) co-location and held there. Hence the strong nature of the forces, its apparent attractive-repulsive nature, and its short range.’

## What is the synchronous interaction?

Second, note that the conventional idea is that the strong force is one of a set that also includes the electrostatic, magnetic, and gravitational forces (EMG). In contrast the Cordus theory proposes that the electrostatic repulsion force is* inoperable *inside the atomic nucleus. So there is no need for a ‘strong’ force to ‘overcome’ the proton electrostatic repulsion. You can either have the EMG forces or the synchronous interaction, not both. The factor that determines which operates is whether the assembly of matter is discoherent or coherent.

‘Unexpectedly, the Cordus theory predicts that this synchronous force only applies to particules in coherent assembly. In such situations the synchronicity of emission means also that the assembled particules must energise at the same frequency (or a suitable harmonic), and either in or out of phase. Thus the synchronous interaction is predicted to be limited to particules in coherent assembly relationships, with the electro-magneto-gravitational forces being the corresponding interaction for discoherent assemblies of matter.’

This is a radical departure from the orthodox perspective, which otherwise sees the strong and electrostatic forces as operating *concurrently. *The Cordus theory predicts that the interaction between neighbouring protons in the nucleus is entirely synchronous (strong force) and that there is no electrostatic repulsion (at least for small nuclei).

## What determines nuclide stability?

Third, the Cordus theory proposes, by logical extension, that the synchronous interaction makes two distinct types of bond, differentiated by same vs. opposed phase (cis- and transphasic) of the reactive ends. This concept does not exist in conventional theories of the strong force which are based on 0D points.

## What is the nuclear polymer structure of the atomic nucleus?

By logical progression, this concept lead to the conclusion that protons and neutrons are bound together in a chain, or as we call it, a *nuclear polymer*. This proves to be a powerful concept, because with it we are able to explain nuclide structures. The following diagram shows how the principle is applied to some example nuclides.

More information maybe found in the following references. They are best read in the order given, rather than the order published.

Dirk Pons,

19 July 2015, Christchurch, New Zealand

## References

[1] Pons, D. J., Pons, A. D., and Pons, A. J., Synchronous interlocking of discrete forces: Strong force reconceptualised in a NLHV solution Applied Physics Research, 2013. 5(5): p. 107-126. DOI: http://dx.doi.org/10.5539/apr.v5n5107

[2] Pons, D. J., Pons, A. D., and Pons, A. J., Nuclear polymer explains the stability, instability, and non-existence of nuclides. Physics Research International 2015. 2015(Article ID 651361): p. 1-19. DOI: http://dx.doi.org/10.1155/2015/651361

[3] Pons, D. J., Pons, A. D., and Pons, A. J., Explanation of the Table of Nuclides: Qualitative nuclear mechanics from a NLHV design. Applied Physics Research 2013. 5(6): p. 145-174. DOI: http://dx.doi.org/10.5539/apr.v5n6p145

### Internal structure of the atomic nucleus: Nuclear polymer

Posted by Dirk Pons in Matter, Nuclear mechanics, Nuclear structure on July 9, 2015

Our previous work has shown that it is possible to explain the existence of the nuclides H-Ne, specifically why each is stable/unstable/non-existent. This is achieved under the assumption that the protons and neutrons are rod-like structures. Previous work in the Cordus theory has shown how the discrete fields of these particules would interlock by synchonising their emissions. Hence the STRONG NUCLEAR FORCE was explained as a SYNCHRONOUS INTERACTION of discrete field emissions.

**Now we have published the details of these mechanics. **See citation below. The theory predicts the nuclear morphology, i.e. the types of shapes that the protons and neutrons can make in their bonding arrangements. It turns out that this is best described as a NUCLEAR POLYMER. Thus the atomic nucleus is proposed to consist of a chain of protons and neutrons. In the lightest nuclides this chain may be open ended, but in general the chain has to be closed. It appears that for stability the proton and neutron need to alternate, and this explains why neutrons are always needed in the nucleus above 1H1. The theory also predicts that the neutrons can form CROSS-BRIDGES, and that these stabilise the loop into smaller loops. This also explains another puzzling feature of the table of nuclides, which is why disproportionately more neutrons are required for heavier elements. In addition the theory predicts that the sub-loops of the nuclear polymer are required to take specific shapes. This paper explains all these underlying principles and applies them to explain the hydrogen and helium nuclides.

The significance of this is the following. First, this is the first published theory of why individual isotopes are stable or unstable, or even non-existent. By comparison no other theory has done this, neither the binding energy approach, the semi-empirical mass-formula (SEMF), the various bag theories, nor quantum chromodynamics (QCD). Second, this has been achieved with a hidden-variable theory. This is a surprise, since such theories have otherwise been scarce and hard to develop. The only one of note has been the de Brogle-Bohm theory of the pilot wave, and that certainly does not have application to anything nuclear. So the first theory to explain the stability features of the table of nuclides for the lighter elements is a non-local theory rather than an empirical model, quantum theory, or string theory. That is deeply unexpected. It vindicates the hidden-variable approach, which has long been neglected.

Ultimately any theory of physics is merely a proposition of causality, and while any theory may be validated as sufficiently accurate at some level, there is always opportunity for further development. The Cordus theory and its nuclear mechanics implies that quantum mechanics is a stochastic approximation based on zero-dimensional point morphology of what the Cordus theory asserts is a deeper structure to matter.

Of course there is still much work to do. Showing that a hidden-variable theory explains these nuclides is an achievement but is not proof that the theory is valid. In the future we will need to expand the theory to the larger table of nuclides. If it can explain them, well that would be something. Also, it would be interesting to devise a mathematical formalism for the Cordus theory. Doing so would provide another method to explore the validity of the theory.

Dirk Pons, 9 July 2015, Christchurch

Pons, D. J., Pons, A. D., and Pons, A. J., *Nuclear polymer explains the stability, instability, and non-existence of nuclides.* Physics Research International 2015. **2015**(Article ID 651361): p. 1-19. DOI: http://dx.doi.org/10.1155/2015/651361 (open access) or http://vixra.org/abs/1310.0007 (open access)

*Problem – **The explanation of **nuclear properties from the strong force upwards has been elusive. It is not clear how binding energy arises, or why the neutrons are necessary in the nucleus at all. Nor has it been possible to explain, from first principles of the strong force, why any one nuclide is stable, unstable, or non-existent. Approach – Design methods were used to develop a conceptual mechanics for the bonding arrangements between nucleons. This was based on the covert structures for the proton and neutron as defined by the Cordus theory, a type of non-local hidden-variable design with discrete fields. Findings – *

*Nuclear bonding*

*arises from the synchronous interaction between the discrete fields of the*

*proton and neutron. This results in not one but multiple types of bond, cis- and transphasic*

*, and assembly of chains and bridges of nucleons into a*

*nuclear polymer. The synchronous interaction constrains the relative orientation of nucleons, hence the nuclear polymer takes only certain spatial layouts. The stability of nuclides is entirely predicted by morphology of the nuclear polymer and the cis/transphasic nature of the bonds. The theory successfully explains the qualitative stability characteristics of all hydrogen and helium nuclides.*

**Originality –**Novel contributions include: the concept of a nuclear polymer and its mechanics; an explanation of the stability, instability, or non-existence of nuclides starting from the strong/synchronous force; explanation of the role of the neutron in the nucleus. The theory opens a new field of mechanics by which nucleon interactions may be understood.

### Variable decay rates of nuclides

Posted by Dirk Pons in Difficult problems in Physics, Matter, Neutrinos, Nuclear mechanics, stability on February 14, 2015

Our previous work indicates that, under the rules of this framework of physics, the neutrino and antineutrino (neutrino-species) interact differently with matter. Specifically that (a) they interact differently with the proton compared to the neutron, and (b) they are not only by-products of the decay of those nucleons as in the conventional understanding, but also can be inputs that initiate decay. (See previous posts).

Extending that work to the nuclides more generally, we are now able to show how it might be that decay rates could be somewhat erratic for β+, β-, and EC. It is predicted on theoretical grounds that the β-, β+ and electron capture processes may be induced by pre-supply of neutrino-species, and that the effects are asymmetrical for those species. Also predicted is that different input energies are required, i.e. that a threshold effect exists. Four simple lemmas are proposed with which it is straightforward to explain why β- and EC decays would be enhanced and correlate to solar neutrino flux (proximity & activity), and alpha (α) emission unaffected.

Basically the observed variability is proposed to be caused by the way neutrinos and antineutrinos induce decay differently. This is an interesting and potentially important finding because there are otherwise no physical explanations for how variable decay rates might arise. So the contribution here is providing a candidate theory.

We have put the paper out to peer-review, so it is currently under submission. If you are interested in preliminary information, the pre-print may be found at the physics archive:

http://vixra.org/abs/1502.0077

*This work makes the novel contribution of proposing a detailed mechanism for neutrino-species induced decay, broadly consistent with the empirical evidence.*

Dirk Pons

New Zealand, 14 Feb 2015

You may also be interested in related sites talking about variable decay rates:

http://phys.org/news202456660.html

https://tnrtb.wordpress.com/2013/01/21/commentary-on-variable-radioactive-decay-rates/

See also the references in our paper for a summary of the journal literature.

UPDATE (20 April 2015): This paper has been published as DOI: 10.5539/apr.v7n3p18 and is available open access here http://www.ccsenet.org/journal/index.php/apr/article/view/46281/25558

### Mnemonic for the beta decays and electron capture

Posted by Dirk Pons in Matter, Matter, Matter-antimatter, Neutrinos, Nuclear mechanics, stability on February 5, 2015

In our paper [1: http://dx.doi.org/10.5539/apr.v7n2p1] we anticipate a unified decay equation. It describes all three conventional decays: β- neutron decay, β+ proton decay, and electron capture (EC). These are the decays of the individual proton or neutron.

Here is a handy Mnemonic for remembering all these decays, based on this equation: *pie with icing equals nuts with egg below and a dash of vinegar*

Pproton | + | 2y + iz(energy) | <=> | nneutron | + | eantielectron or positron | + | Vneutrino | |

pie | with | icing | equals | nuts | with | egg below | and | a dash of vinegar |

Then rearrange this to suit. Remember to invert the matter-antimatter species when you move a particle across the equality (*species transfer rule)*. Note that we use underscore to show antimatter species, and this is the same as the overbar with which you may be more familiar. (We don’t use overbar because it is a confounded symbol used in other contexts such as h-bar. Underscore is a fresh and clearer way to designate antimatter species. It is also a visual reminder that this mechanics needs to be understood from within the NLHV framework of the Cordus theory, i.e. we are not talking about the usual zero-dimensional point particles of quantum mechanics here. Underscore is also easier to print and therefore use.)

The equation as written is focussed on the *proton decay*, which is β+. It is called beta plus because it gives a positive charge output in the form of the e hence ‘+’.

β+ proton decay: p + 2y => n + e + v

For *electron capture* just move the e across the equality to the p side and change it to plain ‘e’ instead.

Electron capture (EC): p + e => n + v

For *neutron decay*, move both the e and v across the equality, changing them to e and v. It is called beta ‘minus’ because the output is the negatively charged electron.

β- neutron decay: n => p + e + v

Remember that electric charge and matter-antimatter species hand are not the same thing. This is an easy area in which to get confused. Electric charge (+/-) refers to the direction in which the discrete forces of the electric field travel, and may be outwards or inwards from the particle. The matter-antimatter species hand (m/m) refers to the handedness of the discrete field, which in the Cordus theory corresponds to the energisation sequence of the field (somewhat like the firing order of a three-cylinder internal combustion engine) which also has two variables.

The mnemonic works for all three conventional decays providing you remember the *species transfer rule*, but I’m not convinced of the soundness of the dietary advice!

## References

- Pons, D. J., Pons, A. D., and Pons, A. J., Asymmetrical neutrino induced decay of nucleons Applied Physics Research, 2015. 7(2): p. 1-13. DOI: http://dx.doi.org/10.5539/apr.v7n2p1 or http://vixra.org/abs/1412.0279

### Unified decay equation for individual nucleons

Posted by Dirk Pons in Matter, Matter-antimatter, Neutrinos, Nuclear mechanics, stability on February 3, 2015

The original Cordus conjecture [1] was a broad conceptual work, and we did not foresee that assuming a two-ended structure for particles would ultimately lead to highly specific predictions for many other phenomena, including nuclear processes as here. Now the theory predicts that neutrino-species can induce decay, and do so asymmetrically [2]. That paper also predicted an underlying orderliness to the decay processes, in the form of a unified decay equation for individual protons and neutrons (nucleons).

Nucleons decay by β- neutron decay, β+ proton decay, and electron capture. These decays proceed by the emission of a neutrino species in the output stream. This is the *forward *direction. There is also a predicted *inverse *decay, where the neutrino-species is supplied as an input. The theory also predicts that the inverse decay can be *induced*, depending on the particle identities.

It is proposed that all these decays can be expressed in a single equation, the *unified decay equation, *given by:

p + 2y + iz <=> n + e + v

with

n neutron

p proton

e electron

e antielectron

v neutrino

v antineutrino

y photon

z discrete force complex (a type of vacuum fluctuation)

2y a pair of photons

i quantity, e.g. of photons

<=> indicates the decay is bidirectional

The equation can be rearranged. However, and this is important, there is a *species transfer rule*. Thus particles other than photons *change matter-antimatter hand when transferred over the equality*. One also has to be sensible about mass when predicting which side the photons are required.

For example, this equation may be rearranged to represent β-, β+, and EC in the conventional forward directions:

β- neutron decay: n => p + e + v

β+ proton decay: p + 2y => n + e + v

Electron capture (EC): p + e => n + v

Furthermore, by representing the equality as bidirectional we can show both the conventional (forward) and proposed neutrino-species induced decays in simple equations. For example:

p + e + v <=> n

with β- in the ‘<=’ direction, and antineutrino induced electron capture represented by ‘=>’.

It is simple to represent additional decays such as:

p + n <=> e + v + iy

Many other applications are possible. This simple mechanics of manipulating decay equations permits an efficient representation. The many different decays can all be represented in one equation. The equation holds for the conventional decays even if its reliability for the induced decays still needs to be validated.

So instead of trying to remember the three conventional decays (β-, β+, EC), simply remember one unified equation p + 2y + iz <=> n + e + v

## References

- Pons, D. J., Pons, A. D., Pons, A. M., and Pons, A. J., Wave-particle duality: A conceptual solution from the cordus conjecture. Physics Essays, 2012. 25(1): p. 132-140. DOI: http://physicsessays.org/doi/abs/10.4006/0836-1398-25.1.132 or http://vixra.org/abs/1106.0027 .
- Pons, D. J., Pons, A. D., and Pons, A. J., Asymmetrical neutrino induced decay of nucleons Applied Physics Research, 2015. 7(2): p. 1-13. DOI: http://dx.doi.org/10.5539/apr.v7n2p1 or http://vixra.org/abs/1412.0279

### Weak interaction and the mechanisms for neutron stability and decay

Posted by Dirk Pons in Nuclear mechanics, stability on January 25, 2015

Why is the neutron stable inside the nucleus, but the free neutron outside the nucleus is unstable? Or to put it another way, why don’t neutrons in a nucleus decay, and why can’t free neutrons survive on their own? This is one of those problems that is difficult to explain. The decay behaviour of the neutron, which is the β- decay, can be measured and quantified, but the process itself is unknown. Conventional explanations are given in terms of mass-energy of the components and binding energy between them. However that’s a superficial quantification of WHAT happens in the situation. It does not explain HOW and WHY at the deeper level. Our latest paper addresses this topic (http://dx.doi.org/10.5539/apr.v7n1p1).

We started from the assumption that matter particles are not zero-dimensional points, but instead have internal structures and emit discrete fields (Cordus particule structure http://physicsessays.org/doi/abs/10.4006/0836-1398-25.1.132). We then determined how the discrete fields would operate within such a conceptual framework. We created a mathematical formalism of the principles for manipulating discrete forces and transforming one type of particule into another. This was used to determine the structures of the W and Z bosons, and the causes of neutron decay within this framework. It turns out that the stability of the neutron inside the nucleus arises because its pattern of discrete field emissions is complementary to that of the proton. The neutron is stable in this bound state because the assembly with the proton results in a complete, as opposed to incomplete, set of discrete forces. This gives the neutron the ability to resist the disrupting effect of the discrete fields coming at it from its surroundings. Hence the stability of the neutron within the nucleus.

This also means that the neutron is an intermediary between the protons. The discrete fields of the protons are otherwise incompatible with each other. Think of the neutron and proton as rods that join only at their ends. The result is chains of neutron-proton-neutron-proton-…. etc. This we call the ‘nuclear polymer’ and our other work shows how this may be used to explain the stability, instability, and non-existence of nuclides (H to Ne) (http://dx.doi.org/10.5539/apr.v5n6p145).

That addresses the stability question. Regarding the other side of the problem, the instability of the free neutron arises because its own discrete field structures are incomplete. Consequently it is vulnerable to external perturbation by discrete fields arising from other particles in the universe (the ‘fabric’ http://dx.doi.org/10.2174/1874381101306010077). These incoming fields subject the free neuron to discrete forces, and we propose that the neutron spatially re-orientates its own field emissions to evade the incoming disturbances. However there is a high degree of randomness in the discrete fields of the fabric, and eventually the free neutron is caught out and its evasive behaviour is constrained. At this time it decays, via β- decay, into the more stable form of the proton.

The exponential life of the free neutron arises because the decay is determined by the random supply of external discrete fields (the background fabric). Consequently any one neutron has an equal chance of decaying anywhere between zero and infinite time. It’s probability of failing in the next instant is not dependent on how many previous instants have elapsed. In terms of probability this means it has a ‘constant hazard rate’. And a characteristic of such is an exponential lifetime. Thus we can explain why the free neutron has an exponential lifetime, as opposed to any other probability density distribution. We further propose that the magnitude of the neutron’s mean lifetime is determined by the fabric density of the epoch and location of the neutron.

Other implications of this work are that the W bosons are by-products from the weak decay process, and do not cause the decay. The weak decay is shown to be in the same class of phenomenon as annihilation, and is not a fundamental interaction.

* *

**Originality –** A novel theory has been constructed for the decay process, using a NLHV mechanics that is deeper than quantum theory. This new theory explains the stability-instability of the neutron and is consistent with the new theory for the stability of the nuclides.

**Reference**

Pons, D. J., Pons, A. D., & Pons, A. J. (2015). Weak interaction and the mechanisms for neutron stability and decay *Applied Physics Research, 7*(1), 1-11. doi: http://dx.doi.org/10.5539/apr.v7n1p1