Archive for April, 2013

Which perspective of time is correct: the absolute clock of quantum mechanics or the spacetime of general relativity?

Neither, but in some ways both are adequate for their purposes.  According to the Cordus theory, time at the fundamental level is created by the local frequency of oscillation of the particule. That effect occurs internal to the particule concerned. Such particules include the electron, proton, etc. Since frequency and energy are related, this has the side effect of making time, as perceived at the particule level, speed up or slow down depending on the energy of the particule.

As a separate effect the arrow of time arises from the irreversibility in the interactions between particules.We explain how that irreversibility arises, but the explanation is a bit long for here.

Thus time is locally generated, and Cordus suggests the QM  idea of an absolute clock is only partlycorrect. Also, Cordus suggests that time is a patchwork at the cosmos scale, not a continuous spacetime, thereby not accepting this feature of GR either. However both QM and GR turn out to be approximately correct, at least at the level of detail that concerns them, which is submicroscopic and macroscopic respectively

English: Cordus model of the photon

English: Cordus model of the photon (Photo credit: Wikipedia)

The Cordus theory provides a more primitive mechanics for time that accommodates the thoroughly different models of QM and GR.

Read more here:

Pons, D.J. (2013) What really is time? A multiple-level ontological theory for time as a property of matter. vixra, 1-40 DOI: http://vixra.org/abs/1301.0074.


, , , , , ,

1 Comment

Reality and apparent simultaneity

One of the long-standing philosophical questions is whether there is a reality to what humans experience. One of the famously controversial ways to looking at this is the holographic principle, which proposes that everything we experience in 3D is merely a holographic projection of 2D information on the outside surface of the universe.

That raises a second question, which is how my experience of reality is connected and coordinated with yours. This introduces time into the problem. Special relativity (SR) has a principle, in the form of the relativity of simultaneity, that says that the order in time of two spatially separate events cannot be determined  absolutely, but instead depends on the motion of the observer. Thus it is impossible to order two events in time if they occur in different places (hence difference frames of reference).

In our Cordus theory of time, we examine some of these questions. We look at the question of how multiple bodies interact, and how the coordination arises. We have already identified that there is no master clock, but if that is lacking then we still need a coordination mechanism. There is a connectedness of phenomena that are at different geometric locations. It seems that spacetime is continuous, because it seems that it is possible to coordinate the two phenomena in time. We show that the two phenomena are linked, because they share the same fabric.

According to this new perspective, any communication between two objects is a result of photons, or massy particules, or fields, and these cause positional constraints on the other, i.e. the geometric location of the reactive end is affected by the communication. A phenomenon that occurs in one volume of matter, be that combustion, noise, motion, etc,  thereby communicates that to other matter around it. Consider one volume to be my body: my speaking transmits forces to the volume of air immediately around me, which in turn propagates the dynamic displacement throughout its bulk, so that the membrane in your ear is displaced, and you hear the sound.

In general the phenomenon is that one volume of matter causes an effect in the second. The interactions at the most basic level all require frequency cycles, so this causes temporal causality.  Thus we infer:

It is not a master clock that accomplishes the temporal connectedness of phenomena that are at different geometric locations, nor does it require continuity of spacetime per se. The piece-wise communication, via discrete field interactions of the fabric, between adjacent volumes of space (matter and fabric) applies spatial consistency to time.

Any one particule A receives discrete forces (fields) from all the particules (many Bs) in the observable universe. Space within the universe is therefore filled with a mesh of  discrete fields in transit, which in the Cordus theory is termed the fabric.

Fabric time is the mutual interconnectedness of matter particules spread over three-dimensional space. This occurs via the fabric, comprising discrete field forces for electric-magnetic-gravitational interaction. Not strictly a time, this is rather  a coordination of events across space.

In this theory the fabric, and the EMG fields it carries, causes a connectedness between particules. They respond together, even if in a slightly delayed manner as their separation increases. There is therefore a coherence and smoothness to the interaction between particules, mediated by the fabric. The resulting interaction stitches together three-dimensional domains of space (matter and vacuum-fabric) into a macroscopic collated time. This level of time passes more slowly, due to the many tiny delays required for particules to react to each other, given the dissimilar-frequency and phase-differences between the particules.  This, Cordus suggests, is where the arrow-of-time arises,  and what general relativity perceives as spacetime. This is also the macroscopic level of physical time, and hence where our perception of time first arises.

This Cordus concept of 3D fabric affirms the general relativity perspective of spacetime.  It also provides an ontological answer to one of the earlier questions: it suggests that spacetime has a quasi-substantial status (comprises discrete force) but has no universal time-signature per se, and mainly represents merely the relationships between bodies.

Read more about the Cordus time theory here:

Pons, D.J. (2013) What really is time? A multiple-level ontological theory for time as a property of matter. vixra, 1-40 DOI: http://vixra.org/abs/1301.0074.

, , , , , , , ,

3 Comments

Holographic principle

The holographic principle is that the information content of all the matter that has fallen into a black hole can be represented by fluctuations in the surface of the event horizon. Extending this to the universe as a whole, the principle suggests that the two-dimensional (2-D) information on the outside surface of the universe, the cosmological boundary, encodes for the whole three-dimensional (3-D) content of the universe within.

However that is all a bit spooky and weird. Nor is it clear how such a mechanism might work physically. If it were true, it would mean we were all just puppets being controlled from the outside layer of the universe.

Shell structure and the cosmological boundary of the universe as it expands into the void. (Image DPons).

Shell structure and the cosmological boundary of the universe as it expands into the void. (Image DPons). CLICK TO ENLARGE

In this paper we provide a physical interpretation of the holographic principle. We  start by developing an explanation for the vacuum, which is also not all that well understood. In turn that gives us some clues about the composition of  void into which the universe expands. Interestingly, this theory predicts that the outside void is  without time, and explains why. Of course it helps that we have separately developed a theory for how time works, which covers the whole range from subatomic particles, to atomic clocks, to mechanical clocks, to macroscopic bodies, and even to living creatures.

From this perspective the cosmological boundary is therefore the expanding surface where the fabric of the vacuum colonises the void beyond the universe. Thus the cosmological boundary is proposed to contain the discrete field elements of all the primal particules within the universe, and therefore contains information about the attributes of those particules at genesis. Inner shells then code for the changed locations of those particules and any new, or annihilated, particules.

So this theory supports the idea of an outer  boundary or frontier for the expanding universe, and even predicts what is on either side of that boundary.

However it also predicts there is no practical way that anyone could sit at that frontier and control the whole universe. So the theory rejects the  notion of holographic control of inner contents of the universe from the outer surface. (The details about this are in the paper, but basically concern the the infeasibility of placing a physical Agent at the boundary of the universe, and the useless of doing so in the first place). It also rejects the more fanciful holographic notions, e.g.  that the boundary contains information about the future and past, or about all possible universes. The Cordus model suggests that there is no causality (control) from the boundary of the universe to its inner contents. The boundary is merely a historical snap-shot of what the universe was like at genesis.

So you can rest easy: the real you is not merely a flat 2D shape on the outer edge of the universe. According to this theory, there is no-one at the edge of the universe pulling the strings and making you dance.

Read more:

Pons, D.J. and A.D. Pons (2013) Outer boundary of the expanding cosmos: Discrete fields and implications for the holographic principle vixra (1303.0017), p. 1-26, DOI: http://vixra.org/abs/1303.0017. Available from: http://vixra.org/pdf/1303.0017v1.pdf.

, , ,

2 Comments