Archive for April, 2012

A physical interpretation of string theory?

String theory (which is really a broad family of theories) suggests that it is possible to make sense of fundamental physics. But only if there are 11 dimensions in which to  operate (or 10,  or 26 depending on the version of the theory). Unfortunately it can’t tell us anything about how or where those other extra dimensions exist. Also problematic is that there are innumerably many solutions to the mathematics, and it has not been possible to identify a variant that corresponds to the world we inhabit. So the potential in string theory has never been realised. It is too abstract to provide working models or physical explanations. Physicists are divided about its usefulness: some love it, while others, like Lee Smolin and Peter Woit, are critical of string theory for its  speculative nature, lack of testable predictions, and cognitive dominance over physics.

Projection of a Calabi-Yau manifold, one of th...

Projection of a Calabi-Yau manifold, one of the ways of compactifying the extra dimensions posited by string theory (Photo credit: Wikipedia)

Consequently we have considered string theory generally irrelevant:  at least for our purpose of seeking a physically meaningful explanation for physics.  However some strange coincidences have caused us to question this position.

Do the Eleven variables for a cordus particule, correspond to the Eleven dimensions for string theory?

We notice that it requires 11 variables to define a cordus particule. These are all features of the geometry, such as the number and orientation of the discrete field elements (HEDs). Strangely, that’s the same number of dimensions in M-theory, one of the popular string theories.  Another similarity that string theory predicts that the photon is an open string, and cordus also predicts a photon particule with two free ends.

Two coincidences don’t make a pattern. Nonetheless it raises an interesting possibility:

cordus and string theory might be describing the same thing from different perspectives

It may be that a cordus-type model, or some other model of hidden-internal-variables, is a physical representation of one of the string theories. That’s an interesting thought, because if it were even partly true then it would open up a whole new set of research possibilities.

So what we are suggesting here is that the ‘orthogonal spatial dimensions’ in string theory might correspond to ‘geometric independent-variables’ in a hidden-variable solution. That would also neatly explain where the extra string dimensions go: they simply represent small-scale geometric features at the sub-quantum level.

It is a radical thought, and of course the weak point in our argument is the assumption that dimensions = variables. Is that valid or not? Yes, from the general perspective of maths (and statistics, and engineering dimensional-analysis too), but string theory may have other constraints of which we are unaware. Something for a string theorist to look into? See here for details:

Seeing a possible connection between string theory and hidden-variable theories has, up to now, not been feasible. This is because hidden-variable theories have been under siege from Bell-type inequalities, and because of a lack of such theories. Having an operational concept like cordus makes the comparison possible.

 Perhaps string theory might yet be a tool for the development of physically meaningful explanations for fundamental physics?


, ,

Leave a comment

Paper published: ‘Wave–particle duality’ in Physics Essays

One of our papers, ‘Wave–particle duality: A conceptual solution from the cordus conjecture’, has been published in the journal Physics Essays.

What’s it about?

The paper addresses one of the fundamental problems in physics; wave-particle duality, by applying design thinking:

‘This work comes at the issue from a totally different approach: it applies design thinking to the problem.’

Yes, that’s right! The principles of engineering design are used to come up with a  candidate solution for resolving that paradox:

Based on File:Refraction_internal_reflection_d...

Based on File:Refraction_internal_reflection_diagram.PNG on the English Wikipedia. Original description: The critical angle is when the light is refracted precisely at an angle such that t transmission is along the boundary. (Photo credit: Wikipedia)

‘The cordus concept is used to explain the path dilemmas of the single photon in the double-slit device, and the wave behaviour of light including the formation of fringes by single photons and beams of light. In addition it provides a tangible explanation for frequency. It also yields new quantitative derivations for several basic optical effects: critical angle, Snell’s law, and Brewster’s angle.’

The full paper is here:


About the journal

The journal Physics Essays is open-minded about novel ideas and not afraid of publishing content that might be contrary to the established orthodoxy:

‘Different points of view will be accepted as long as they are logically sound and well balanced in their exposition’

The journal  focusses on fundamental problems in physics, and articles are peer-reviewed:

‘Physics Essays is an international journal dedicated to theoretical and experimental aspects of fundamental problems in physics and, generally, to the advancement of basic knowledge of physics’


, , ,

Leave a comment